

University of Hamburg • 25 > 29 September 2006

Oceanography from Space, D. Stammer, IfM

Earth Observing Satellites

Electromagnetic Waves

(NOTE: Frequency refers to number of crests of waves of same wavelength that pass by a point in one second.)

Remote Sensing Principles

Reflectance

Scattering

Transmittance

Solar Radiation

The atmosphere is not transparent

Remote Sensing Approaches

There are many remote sensors

Instruments

Orbits

Orbits determine:

- Where do I see the Earth
- How often
- Resolution in space
- What space-time pattern

Important parameters: inclination, height, repeat period, swath width.

FIGURE 38 The elements of an elliptical orbit: semimajor axis *a*, inclination *i*, longitude (or right ascension) of the ascending node Ω , argument of perigee ω , and true anomaly ν . The eccentricity *e* relates the semimajor axis *a* to the semiminor axis *b* through the expression $e^2 = (a^2 - b^2)/a^2$.

The Earth System

The Earth System

Here we will deal only with the ocean !!!

Energy Balance - Climate

The Meridional Overturning Circulation

... determines the clima in Europa

Air temperature January

Ocean currents

Surface (warm)

Near-surface Circulation of the global Ocean: Continents are responsible for meridional component of mean circulation. Asymmetry in temperature and currents western *<--->* eastern sides

surface temp. (°C), 100m velocity 4x4° model simulation

Deep circulation brings Atlantic surface water into Pacific.

Salzgeh. 3000m (Beobachtungen)'-'4x4° Modell-Vektoren

But the ocean is a turbulent fluid!

There are many important processes in the ocean with many space and time scales

TOPEX/POSEIDON 10-Day Repeat Ground Track

Observations from Volunteer Observing Ships

QuikSCAT Coverage in 24 Hours (1 February 2000)

0 2 4 6 8 10 12 14 16 18 m/s

The alternative to Earth observations from satellites

The use of Research Vessels ...

(D. Quadfasel, IfM)

Earth observing Satellites are an important ellement of the Earth observing system

The offer the possibility to observe the Earth globally with a space-time resolution required for quantitative monitoring over the ocean, land, Ice and in the atmosphere.

esa

ERS-1 first ESA Earth observing Satellite. Launched in 1991. Continued by ERS-2 in 1995.

http://www.esa.int

http://earth.esa.int

http://envisat.esa.int

ERS-1/2 Payload

AMI (C-Band, 5.3 GHz) •all weather, day and night **SAR image mode** (High rate) **SAR wave mode** (Low Rate) Wind Scatterometer (Low rate) •all weather; compared to Ku-band scatterometers no rain contamination **Radar Altimeter** (Microwave sounder) **ATSR** (ATSR-2 ERS2) Along Track Scanning Radiometer •SST measurement precision: 0.1 K Laser Retro-reflector

PRARE (Precise Range and Rate Equipment)

ENVISAT: Mission Objectives

- to provide for continuity of the observations started with the ERS satellites, including those obtained from radar-based observations,
- to provide for enhancement of the ERS missions, notably the ocean and ice mission,

- to extend the range of parameters observed, to meet the need to increase knowledge of the factors determining the environment,
- to make a significant contribution to environmental studies, notably in the areas of atmospheric chemistry and ocean studies (including marine biology).
ENVISAT

ENVISAT

- Largest Earth Observation satellite ever
- Flagship of ESA Earth Observation
- A 10 sensors to monitor the Earth system
- 77 types of data products
- 4 140 GB data generated per day
- ♣ Launched 1st March, 2002

¬Launch by ARIANE 5 on 1st March 2002

- Injection on perfect orbit
- Launch configuration
 length 10.5 m
 envelope diameter 4.6 m
- ¬In-Orbit configuration
 ♣26m x 10m x 5m
- ¬ Mass

Total satellite 8140 Kg (ERS1 2384 kg)
Payload 2050 Kg

¬Solar array power ♣6.5 kW (EOL)

¬ Orbit

sun synchronous, 800 km as ERS, 10:00, i.e. 30 minutes before ERS-2
14 11/35 orbits per day
repeat cycle of 35 days (501 orbits)

ENVISAT: powerful tool for monitoring the state of our planet

Dimensions

Launch configuration: length 10.5 m envelope diameter 4.6 m In-Orbit configuration: **26m x 10m x 5m**

• Mass

Total satellite **8140 Kg** Payload 2050 Kg

Power

Solar array power: 6.5 kW (EOL) Average power demand: Sun Eclipse (watts) (watts) Payload 1700 1750 Satellite 3275 2870

• Orbit

800 km as ERS, sun synchronous 10:00, i.e. 30 minutes before ERS-2

ENVISAT: powerful tool for monitoring the state of our planet

[Advanced Synthetic Aperture Radar]

MWR [Microwave Radiometer]

Synergy between ENVISAT instruments: what ENVISAT can see when it looks down at you?

Environmental Information from Envisat

ADM-Aeolus

ESA's E.O. programme

Elements of Ocean Remote Sensing

Variables: SSH, SST, Color, Eis, Wind, SWH. Systems: Passive: VIS, IR, MW. Aktiv: ALT, SCAT, SAR, Laser

Remote sensing of the ocean is hampered by atmosphere, but less so in MW band.

Data assimilation is important element of remote sensing.

Sea Surface Temperature

Sea Surface Temperature

(October 2002)

Sea Surface Temperature

End August 2002

End August 2003: 3 degrees warmer

Long Term monitoring of SST

Mean Sea Surface Temperature

Sea Surface Temperature Anomaly

Sea Surface Temperature ((A)ATSR)

Estimate of Residual Trends in Global Sea Surface Temperature

Measuring SST using Microwave Technology:

MW SST from AMSR-E

SST anomalies reveal ocean Rossby waves.

SST15.5°N

MW data lead to improved estimates

COLOR: Visible Observations of life and suspended matter.

Remote Sensing of Coral Reefs:

A Prototype Web-based Tool for Coral Reef Researchers

Primärproduktion, Absorption

Chl_a concentration and Ice

Animation Chl_a from SeaWIFS

MERIS imaging the world 15 to 30 April 2003

MERIS image of the world March & April 2003

© ESA 2003

River discharge Yangtze mouth (China) March 2003

Atmospheric dust, ocean fertilisation and ocean dimming.

Red Tide in the German Bight

source: GKSS

MERIS Red Tide Index 3.8.2004

Wind stress measurements

A scatterometer measures the surface roughness in several directions relative to the wind. The dependence of this parameter on the wind stress allows to infer the wind speed and direction from satellites with spatial resolution of about 25 km.

Altimetry Measures Sea Surface Slopes and Currents

SWH Information agrees well with Buoy Data

The wave climate

 The biggest signal in the wave climate is of course seasonal. Wave height (metres), January

wave neight (metres), July

Wave Period and the NAO

 In a similar way to wave height wave period relates to the NAO

The above shows the first EOF of period. On the left we have a regression of Tm on the NAO

EOF 80's-90's

T/P 1993-2001 ssh var

Observations of SSH Anomalies

Annual Averages of SSH from 10 Years of TOPEX/POSEIDON Data (Courtesy of L.-L. Fu)

ERS-based observations

Cipollini et al 1997 (North Atlantic): Hughes et al 1998 (Southern Ocean)

SSH Anomalies from T/P

West- and eastward traveling waves.

Example of SSH eddy statistics from along-track data: Relation eddy scale to Ro.

SSH Drift 1993 – 2002

Processes causing sea level change:

Maps of steric sea level trends and Topex/Poseidon trends (1993-2003)

Topex/Poseidon

Global Sea Level Rise:

Sea Surface Height (Altimeter)

Sea Level rise

Sea Surface temperature rise

Altimetry measurements Trend +3 mm/yr

Courtesy of Remko Scharroo, NOAA, US

ATSR/AATSR measurements Trend 0.13±0.03°C/decade

Courtesy of David Llewellyn Jones, Univ. Leicester, UK

Satellite Observations of Hurricanes

Hurricane Isidore (September 2002)

Altimetry and Bathymetry

The Sandwell and Smith Topography

The Marine

Temporal variation Are being cause Through changes in Ground water and Ocean mass.

The GRACE Mission

GOCE and the Geoid

Studies in:

Solid Earth Physics - anomalous density structure of lithosphere and upper mantle Oceanography - dynamic ocean topography and absolute ocean circulation Ice Sheet Dynamics - ice sheet mass balance Geodesy - unified height systems Sea Level change

Geoid

Gravity Anomalies

Determine Earth's gravity field and its geoid (equipotential surface for a hypothetical ocean at rest):

> high accuracy (1 mgal and 1 cm) fine spatial resolution (~ 100 km)

Reaktion des Grönlandeises auf globale Erwärmung

Greenland ice sheet melt area increased on average by 16% from 1979 to 2002. The smallest melt extent was observed after the Mt. Pinatubo eruption in 1992

CIRES

Konrad Steffen and Russell Huff, University of Colorado at Boulder

Ice Melting

New mechanisms of increased ice shield sensitivity to global warming

ERS / Envisat SAR

C-19 iceberg monitoring in Antarctica (from May to October 2002)

Generated using browse images

Arctic Sea Ice Monitoring

Daily ice concentration maps using passive microwave sensors show strong seasonal and interannual variations in sea ice extent between 1.9. 2003 and 31. 8. 2005.

> (S. Kern und G. Spreen, IFM)

ESA's CryoSat-II Mission

- Research goals:
 - Study of mass imbalances of Antarctic and Greenland ice sheets
 - Investigate the influence of the Cryosphere on global sea level rise
 - Use of sea ice thickness information for advances in Arctic and global climate studies
- Measures variations in the thickness of the polar ice sheets and thickness of floating sea ice

Payload: SIRAL altimeter, conventional pulse limited operation, synthetic aperture along track, interferometer across track

CryoSat: First observations of regional, seasonal, and interannual sea ice variability

$$h_i = f \frac{\rho_w}{(\rho_w - \rho_i)} + \frac{h_s \rho_s}{(\rho_w - \rho_i)}$$

ESA's SMOS Mission

- To demonstrate the use of Lband 2-D interferometry to observe:
 - salinity over oceans,
 - soil moisture over land
 - · ice characteristics
- To advance the development of climatological, hydrological and meteorological models.

Payload:

L-band radiometer, synthetic aperture, exploiting interferometry, multi-polarisation, varying incidence angle

SMOS und AQUARIUS

Both measure soil moisture and Surface salinity.

SMOS helps observing the water cycle

The Global Water

Atmosphere:

Atmospheric Water Vapour Transport

Land:

Precipitation; snow, ice; soil moisture.

Ocean:

Net evaporation; surface salinity fresh water/sea ice transports

Ground water, run-off

The future integrated oceanography

- Use remote sensing data, insitu data and models for an improved description and forecast of the ocean state.
- Required for operational oceanography applications and to develop an improved understanding of ocean circulation.

Infrastructure Required for Operational Oceanography

Model simulations and assimilation on super computers

Autonomous in situ observing systems

Data assimilation

Method:

Synthesis of all available Observations to obtain dynamically consitent description of ocean circulation. Used to estimate climate change; estimate oceans uptake of CO2; initialize coupled models; now-casting of Ocean currents.

Example:

(MIT, JPL, SIO)

Drifter 15m mean velocity

WOCE and pre-WOCE hydro	graphic Sections						
TOGA TAO Teperat	are Profiles						
Global 1	XBT Data Set						
	P-ALACE and ARGO	Temperature and Sa	linity Profiles				
	SSS	Observations					
lonthly mean wind stress fields from ERS/NS/	CAT/QSCAT						
ERS-1 SSH" ERS-2 SSH"							19
daily TP SSH'							
mean TP SSH – EGM96							
Merged monthly Reynolds/TM1 SST	Fields						
u_ncep						10 mm	
Hq_ncep						10	
Hs_ncep						10	
monthly T_lev							
monthly S_le	ev						
				1			
1002 1003 1004	1005 10	1007	1000	1000	2020	-	2002

Data Constraints

What are the requirements for operational oceanography: a GOOS perspective

- Safety and efficiency of marine operations
- Control and mitigate the effects of • natural hazards
- Detect and predict the effects of • climate change
- Reduce public health risks •
- Protect and restore healthy • ecosystems
- Restore and sustain living marine • resources

Post EPS

Operational Oceanography Applications

Global warming, climate and seasonal forecasting, weather

Fisheries and fishery management

Offshore Industry

Coastal applications

Maritime security

Ocean and ecosystem research

Navies

others...

Oil Spill detection

Service Examples: Spain &

North Sea

GMES Serv	ices Network	and the second	Provisión del Servicio Español	KONCSBERG			Kongs	berg Satellit SA MarC	e Service: oast	S	
ervicio	Red de Servicio Marcoast: Servir	cio español de monitorización de manchas de	hidrocarburos. La adquisición de datos de	Search			-	OA Maro	oust	Plain map Grid map	p Overlay map
os Datos	satelite se nidestrari a continuaci	JOH.		From: 20	06-03-01 To: 2006-0	4-24 Search	🕑 Own data 🔲 Group dat	• N	1:13128164 (1/1	1	1 10 PT
	Fecha de adquisición	Informe de detección de vertido	Vertido + Detección de barcos	Date Time Sat 2006.03.20 10:20:21 Ea	Customer	Response country	Status Files	Feedback			10sto
	23/04/2006 22:22:23	Ver / Descargar Imagen	Ver) Descargar imagen	2006-03-21 06:09:40 RS	AT ESA MarCoast	Unknown	No slicks 3:	N/A .		957	
	27/04/2006 10:38:47	Ver / Descargar Imagen	Ver / Descargar Imagen	2006-03-21 09:58:14 E	V ESA MarCoast	Unknosvn	ð ð 3: 💷 📲	View.		1927	
	02/05/2000 0.444.26	Falle en transmisión Envicat	Fallo on transmisión Envisat	2006-03-24 10:03:59 EP 2006-03-25 17:19:26 PS	V ESA MarCoast	Unknown	3:	K View 6		The	1000
ab	06/05/2006 10:56:00	Ver (Descenser Inegen	Ver / Descargar Imagen	2006-03-27 10:09:43 E	V ESA MarCoast	Unknown	No slicks 3: 10	NA G		Derica	
telespozio	09/05/2006 22:19:32	r (Descarger Imagen	Ver / Descargar Imagen	2006-03-28 06:05:29 RS	AT ESA MarCoast	Unknown	No slicks 3:	N/A 🖻		Dut	2 851
A PARAMANA T & COLUMN AND	13/05/2006 10:35:56	Fallo e proceso ENVISAT	Fallo en proceso ENVISAT	2006-03-30 10:15:27 EP	V ESA MarCoast	Unknown	No slicks 3: 1	N/A		2 hours	Ainsteam
START ST		1		2006-04-02 10:20:59 EM	V ESA MarCoast	Unknown	No slicks 3: 14	N/A 7		James	Bruceles
/				2006-04-04 06:01:18 RS	AT ESA MarCoast	Unknown	No slicks 3: 1	N/A			Heler Paris
rvicio				2006-04-07 06:14:29 RS 2006-04-11 06:67:07 RS	AT ESA MarCoast	Unknown	No slicks 3:	N/A		the St	SW/2
6				2006-04-11 17:22:23 RS	AT ESA MarCoast	Unknown	No slicks 3:	N/A			- Vinda
				2006-04-14 06:09:36 RS	AT ESA MarCoast	Unknown	No.slicks 3:	N/A CLUC	6444		SALX CALCULAR
				2006-04-18 05:52:55 RS	AT ESA MarCoast	Unknown	No slicks 3:	N/A N/A			
	ALC NO.			2006-04-18 10:18:16 EP	V ESA MarCoast	Unknown	Ready None fou	nd N/A			
		inglés + créditos +	contactar + Last update 16/5/2006	2006-04-21 10:23:55 E	V ESA MarCoast	Unknown	Ready N/A	NA			
	1			16°		1	A Case				п ,
				41°	-6° -5°	-42 .	-3° -2°				~

MarCoast Drift Forecasting

SAR Sea Floor Immage

Structure of the sea flor can be detected in SAR immages due to their inpact on the surface roughness

SAR immages can be used to monitor changes in the sediements.

ERS-1 SAR Immage, 100 km × 100 km, Chinese Coast Line.

Eauloueud puint relduire

}Atmospheric convection cellsoriginating from land-sea breze.

ERS-1 SAR immage 100 km × 100 km, Messina (Italy)

Sea Surface (SAR Wave Mode)

Highest waves in dataset

Geographic coverage – baseline service

Oil pollution

Water Quality & Algal Bloom

Pan-European alert (MUMM)

e.g. ACRI-MERIS data for 23.4.2005

Algal Bloom Services

MERIS Water Constituents for the Baltic Sea

Compositing Period

 Scene Star:
 2005-07-09 10:07:17

 Scene End:
 2005-07-11 10:55:20

 Avg. Start:
 2005-07-09

 Projection:
 10

 Projection:
 Lambert

Data acquisition and processing by DFD under ESA-project GEMEL-3, ID 1413 MERIS Application Product Project DLR-GKSS-FUB-BC

Ocean Environmental Monitoring

Water Quality Service examples

Cynaobacteria monitoring & forecasting

Water Quality Indictors for EEA

- Service content (bi annual)
 - Water Quality Indicators:
 - Chlorophyll concentration (2km)
 - Water transparency (2
 - Algal Bloom occurrence
 climatology
 - Number & location
 - Indication of type and harmfulness
 - Water Quality Trends
 Assessment

Ice monitoring and forecast system

Envisat measures global Chlorophyll concentration

Chlorophyll concentration is a measure of abundance of phytoplankton biomass, which has an important role in fixing CO2 through photosynthesis.

ENVISAT - MERIS Chlorophyll-a case 1 - Global coverage - Monthly average - January 2003

Envisat monitors Ice-Sea Ice in Antarctica

LARSEN B collapse observed in 2002 by ERS /Envisat

Courtesy of H.Rott, Univ Innsbruck, AU

Envisat Radar monitoring Antarctica Ice and Sea-Ice extent (April-to June 2004)

SST Anomalies

Hill et al, 2000; Leeuwenburgh & Stammer, 2001

