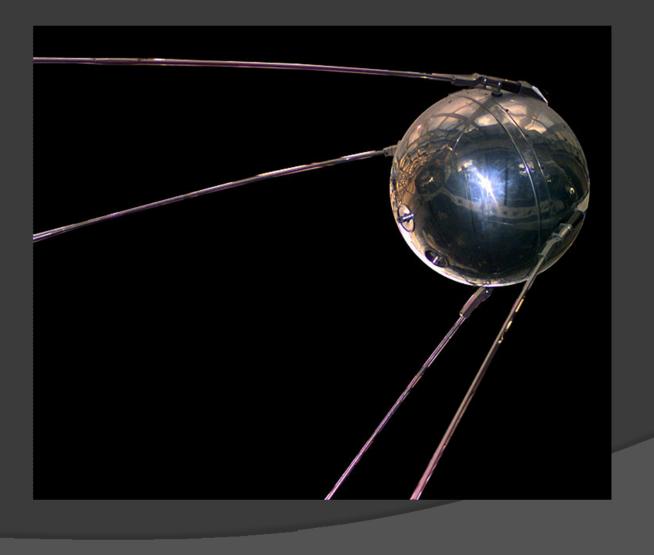
597K: Earth Remote Sensing

SATELLITE TIMELINE FOR MONITORING OF LAND USE AND COVER

Katie Jablonski Joshua Klein Jared Oyler

Outline


- General satellite history pre-Landsat era
- Commercial land monitoring satellites
- Multispectral land monitoring satellites
- Synthetic Aperture Radar (SAR) land monitoring satellites
- Output A state of the state

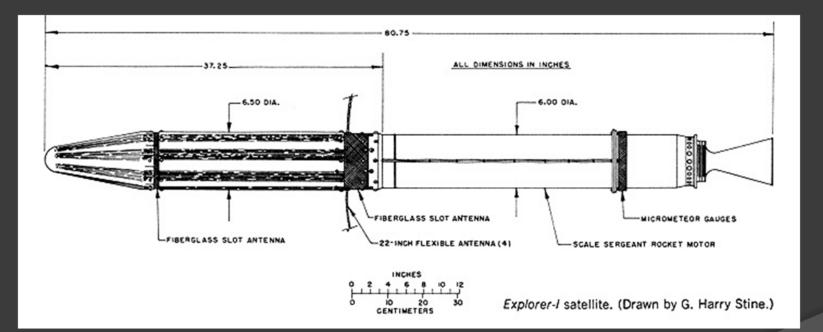
Early Remote Sensing Systems (Pre-Landsat)

Sputnik-1

- Launched October 4, 1957
- First Earth orbiting artificial sattelite
- Ignited the space race
- Mission duration was 3 months
 - Transmitted signals for 22 days after launch

Sputnik-1

Sputnik-1


- Orbital Period of 101.5 minutes
- Identified the upper atmospheric layer's density, through measuring the satellite's orbital changes.
- Provided data on radio-signal distribution in the ionosphere
- Pressurized nitrogen, in the satellite's body, provided the first opportunity for meteoroid detection.
- Emitted radio signals at 20.005 and 40.002 MHz

Sputnik 2

- Second artificial satellite in Earth orbit
- Launched November 3, 1957
- First to carry a living animal, a dog named Laika

- First Earth Satellite of the United States
- Launched on Feb 1, 1958
- Mission duration was 111 days
- First Spacecraft to detect the Van Allen Belts
- Orbital Period of 114.8 minutes

- Wire grid detector used to detect micrometeorite impacts.
 - 12 parallel connected cards mounted in a fiberglass ring.
 - Could detect micrometeorites of at least 10µm
- Five temperature sensors
- Acoustic detector was also used to detect cosmic dust (micrometeorite) impacts.
 - Sensor Area was .075m² with a threshold sensitivity of 2.5 * 10⁻³ g-cm/s
- Carried the Iowa Cosmic Ray Instrument
 - Consisted of A Geiger-Miller tube to detect Cosmic Rays
 - Could detect Protons with E > 30 MeV and electrons with E > 3 MeV – It was saturated most of the time
- Data was Transmitted by two antennas
 - 60 watt dipole antenna at 108.03 mhz
 - Four flexable whips forming a 10 milliwatt turnstile antenna at 108 mhz.

Oldest satellite still in orbit


- Orbital Period of 115.7 Minutes
- Same Mission as Explorer 1
- Launched March 26, 1958
- Orbit decayed after 93 days

Sputnik 3

- Launched May 15, 1958
- Remained in Orbit until April 6, 1960
- Contained a radio-frequency quadrupole mass spectrometer.
 - Found that the upper atmosphere contained mostly atomic oxygen ions
- Measured the Atmospheric pressure
 - At a height of 266 km, the pressure was only 1/10,000 atm.
- Metal plates to detect meteorite impacts
 - Averaged 1 impact every 100 seconds
- First satellite with solar panels
- Also had cosmic ray detectors

Sputnik 3

Project Vanguard

- Vanguard-1 was launched March 17, 1958
 - First satellite to run on solar power
 - Oldest artificial satellite still orbiting the Earth
 - 134.2 minute orbit
 - Had a radio phase-comparison angletracking system
 - Showed that the earth was NOT spherical
 - Vanguard 2 and 3
 - Focused on atmospheric density, cloud cover, and x-rays

Project Vanguard

Project Nimbus

- 7 Nimbus Satellites in Total
- Launched from 1964 to 1978
- Focused on
 - Earth's Radiation Budget
 - Sea Ice
 - Ozone Layer

 The Nimbus project was also a precursor to GPS by having instruments able to locate weather stations on Earth

Project Nimbus

Commercial Imaging Systems

Timeline of Major Commercial Missions

2015 2011 – GeoEye-2 2010 2008 - GeoEye-1 2005 2001 – QuickBird 2000 1999– IKONOS 1997– OrbView-2 1995 1990 1985 1975

Satellite: G	GeoEve 1								
Spatial Res		Spectral Range	Satellite: IK						
-	/Modes	/No Beams	Spatial Res	Spectral Bands					
1.65 m	1	450-520 nm	3.2 m	/Modes 1	/No Beams 445-516 nm				
	2	520-600 nm	5.2 III	2	506-595 nm				
	3	625-695 nm		3	632-698 nm				
	4	760-900 nm		4	757-853 nm				
.41 m	Pan	450-900 nm	.82 m	Pan	450-900 nm				
Satellite: QuickBird Satellite: OrbView-2									
Spatial Res	Spectral Bands	Spectral Range	Spatial Re		Spectral Bands	Way	velength		
	/Modes	/No Beams	2.4 m		1		-422 nm		
2.4 m	1	450-520 nm 520-600 nm			2	433	-453 nm		
	2 3	630-690 nm			3		-500 nm		
	5 4	760-900 nm			4		-520 nm		
60 cm	Pan	445-900 nm			5		-565 nm		
00 cm	I dii	445-900 hill			6		-680 nm		
					7 8		-785 nm -885 nm		
					0	040			
G1 GeoEye-1 IKONOS									
02	OrbView-2		Bird						
10	0%		r		_				
Atmospheric Opacity									
ity he		G1		/	VI	1			
on do									
Ath									
0	% -					/ /			
	0.1 nm 1 nm	n 10 nm 100 nm 1 j	ım 10 μm	100 µm 1 mr	m 1 cm 10 cm	1 m 10 m	100 m 1 km		
	Wavelength								
							1		

QuickBird

Sensors

- * 60 cm (24 in) (1.37 µrad) panchromatic at nadir
- * 2.4 m (7.9 ft) (5.47 µrad) multispectral at nadir
 - o MS Channels: blue (450-520nm), green (520-600nm), red (630-690nm), near-IR (760-900nm)

Swath width and area size

- * Nominal swath width: 16.5 km at nadir
- * Accessible ground swath: 544 km centered on the satellite ground track (to 30° off nadir)
- * Area of interest
 - o Single area: 16.5 km by 16.5 km
 - o Strip: 16.5 km by 165 km

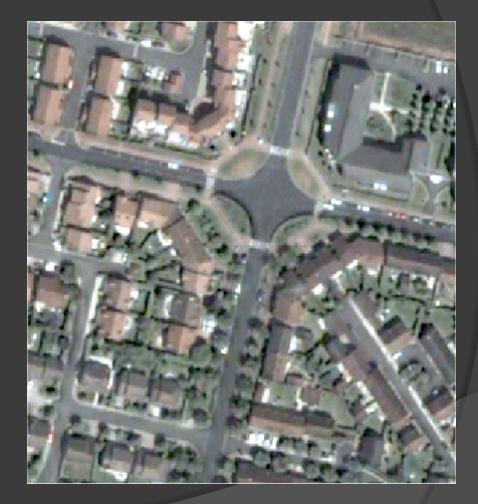
Orbit

- * Altitude: 450 km 98 degree sun synchronous inclination
- * Revisit frequency: 1 to 3.5 days depending on latitude at 60 cm resolution
- * Viewing angle: Agile spacecraft, in-track and cross-track pointing
- * Period 93.4 minutes

Onboard storage

* 128 Gibibit (137 Gigabit) capacity (approximately 57 single area images) Spacecraft

- * Fueled for 7 years
- * Launch Date: October 18, 2001


QuickBird

QuickBird

Offers Sub-meter pixel imaging

Extremely high spatial resolution imaging

IKONOS

Spatial resolution

- * 0.8 m panchromatic (1-m PAN)
- * 4-meter multispectral (4-m MS)
- * 1-meter pan-sharpened (1-m PS)

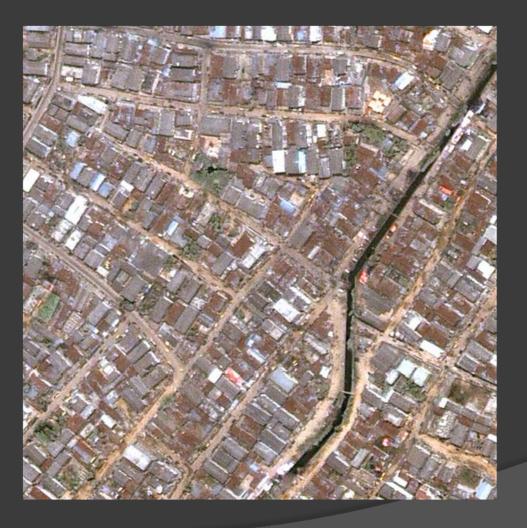
Spectral Resolution

Band	1-m PAN	4-m MS & 1-m PS
1 (Blue)	0.45-0.90 µm	0.445-0.516 µm
2 (Green)	*	0.506-0.595 µm
3 (Red)	*	0.632-0.698 µm
4 (Near IR)	*	0.757-0.853 µm

Temporal resolution

The revisit rate for IKONOS is 3 to 5 days off-nadir and 144 days for true-nadir.

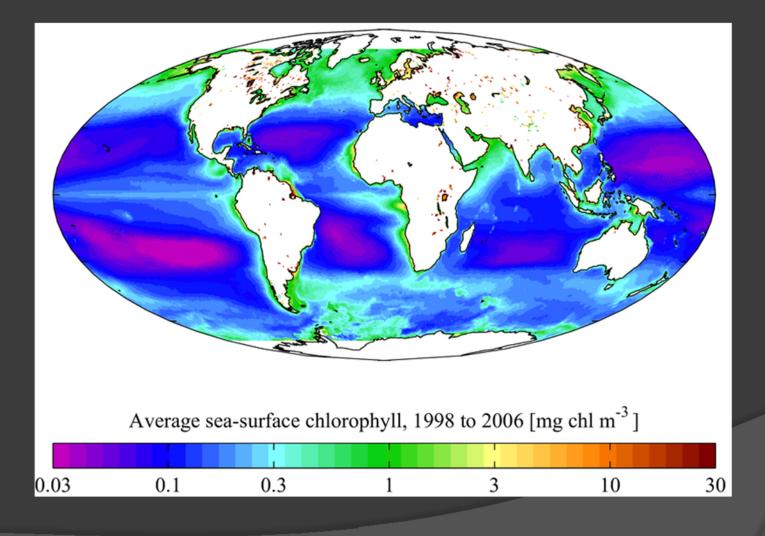
Radiometric resolution


The sensor collects data with a 11-bit (0-2047) sensitivity and are delivered in an unsigned 16-bit (0-65565) data format. From time-to-time the data are rescaled down to 8-bit (0 - 255) to decrease file size. When this occurs much of the sensitivity of the data needed by Remote Sensing scientists is lost.

Swath

11 km x 11 km (Single Scene)

Launched Sept 24, 1999


IKONOS

Orbview-2

- Also called SeaStar
- Launched in 1997
- collects color imagery of the Earth's entire land and ocean surfaces on a daily basis
- 2,800 kilometer-wide swaths, which are routinely used in naval operations, environmental monitoring, and global crop assessment applications.
- Carries NASA's SeaWIFS sensor
- The sensor resolution is 1.1 km (LAC), 4.5 km (GAC). The sensor records information in the following optical bands:
- Band Wavelength
- 1 402-422 nm
- 2 433-453 nm
- 3 480-500 nm
- 4 500-520 nm
- 5 545-565 nm
- 6 660-680 nm
- 7 745-785 nm
- 8 845-885 nm
- The instrument has been specifically designed to monitor ocean characteristics such as chlorophyll-a concentration and water clarity.


OrbView-2

OrbView-2

- Launched Sept 6, 2008
- GeoEye-1 provides 41 centimetres (16 in) panchromatic
- 1.65 meter multispectral imagery
- I5.2km swaths
- The spacecraft is intended for a sun-synchronous orbit
- Altitude of 425 miles (684 km)
- Inclination of 98 degrees
 - 10:30 a.m. equator crossing time
- GeoEye-1 can image up to 60 degrees off nadir
- Significant financial contributions from Google and the National Geospatial Intelligence Agency

- Due to launch in 2011-2012
- Satellite will have a resolution of 25cm, making it the highest resolution commercial Earth observation satellite in orbit
- Only 50cm resolution will be available to other users

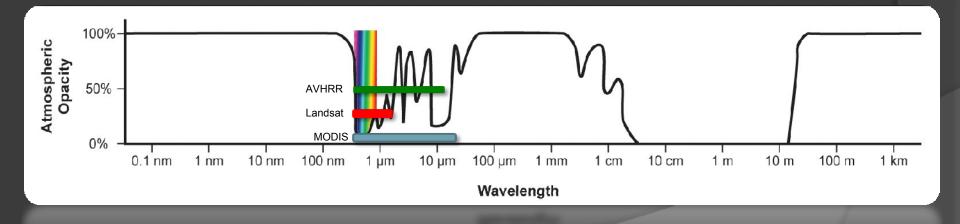
Multispectral Imaging Systems

Applications of Multispectral Satellite Imaging for LULC

- Fire detection & mapping
- Land cover type and extent
- Surface Temperature
- Leaf area index
- Snow cover and ice extent
- NDVI (normalized vegetation index)
- Crop Growth Stage
- Landcover usage (NLCD)
- Soil Brightness Index (SBI)
- Green Vegetation Index (GVI)
- Deforestation monitoring

Multispectral Sensor Timeline

Launch Date & Sensor


SENSOR	PLATFORM	Spatial Res.	Country	2005	
MSS, ETM	Landsat 1-7	30 m	USA	2000	2003 – LISS-3,4 2002- MERIS
AVHRR	NOAA POS	1 – 25 km	USA	2000	2000- ALI
SPOT		2.5 – 20 m	France		1999, 2002- MODIS 1999- ASTER & MISR
ATSR	ERS-2		ESA	1995	1995- ASTR
MODIS	Terra, Aqua	2 bands: 250 m, 5 bands: 500 m and 29 bands: 1 km	USA	1990	1000 0000 CDOT
ASTER	Terra	15- 90 m	USA	1985	1986 – 2002 SPOT
MISR	Terra	275 m	USA		
ALI	EO-1	10-20 m	USA	1980	1978 – 1988 AVHRR
LISS-3,4	ResourceSat		India	1975	1970 – 1900 AVTIKK
MERIS	Envisat	300 m and 600 m	ESA	1970	1972 – 1999 MSS, ETM

Example Bands from Multispectral Platforms

Key (in μm)

MODIS 36 bands: 0.4 – 14.4

Landsat Band 1: 0.5 - 0.6 Band 2: 0.6 - 0.7 Band 3: 0.7 - 0.8 Band 4: 0.8 - 1.1 AVHRR Band 1: 0.58 - 0.68 Band 2: 0.7 – 1 Band 3: 3.55-3.93 Band 4: 10.2 – 11.3 Band 5: 11.5 – 12.5

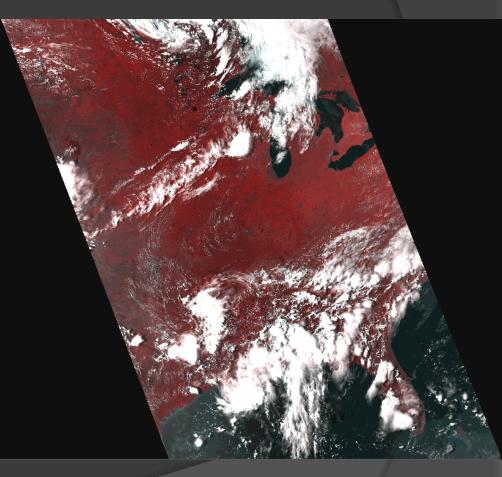
Picture Source:

http://en.wikipedia.org/wiki/File:Atmospheric_electromagnetic_transmittance_or_opacity.jpg

Landsat Platform

- Satellites launched from 1972-1999
- Out of the 7 satellites, only 5 and 7 are still functioning
- Multispectral (MSS) on Landsat 1-5
- Thematic mapper (TM) on 4 & 5
- Inhanced Thematic mapper (ETM) on 7
- Landsat 5: TM, MSS, 16 day revisit, provides archive of satellite images
- Landsat 7: ETM+, 16 day revisit, 15m reolution, 60 m thermal resolution, cloud-free imagery and current images

MODIS

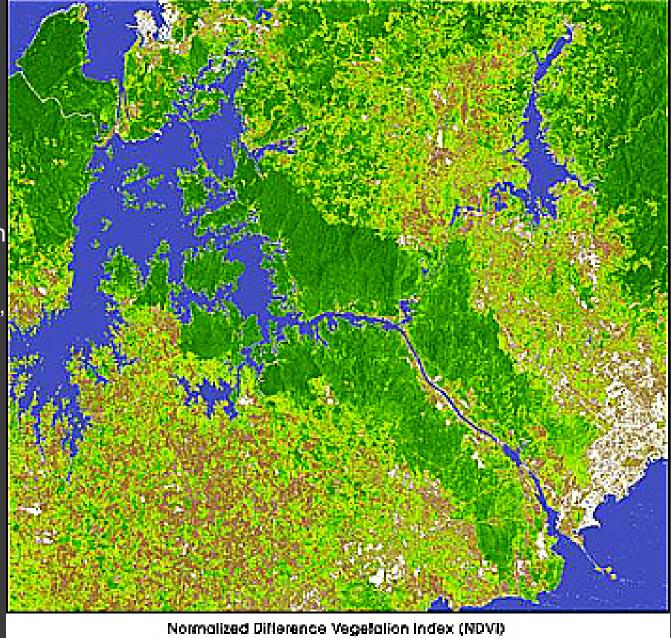

Spatial Resolution: 250 m (bands 1-2), 500 m (bands 3-7) Launched: May 4, 2002 Swaths: 60 - 80 km, 26-day repeat cycle for nadir viewing On board NASA's **Terra Satellite**

Snow and Fog in the Pacific Northwest, 1/28/09

Advanced Very High Resolution Radiometer (AVHRR)

- Provides 4-6 band multispectral data from NOAA polar-orbit satellites
- Continuous coverage from 1979 to current; one of the most comprehensive & longterm collections of data over the high arctic
- Resolution: 1.1 km at nadir

ASTER


- Highest spatial resolution surface spectral reflectance, temp, and emissivity data
- Has multispectral thermal IR data in the 8 12 micron region, globally
- Launched: Dec 18, 1999
- On board the Terra satellite, which as a polar orbit, crossing the equator each morning at 10:30
- Swath width: 60 km

Multispectral Satellite Application...NDVI

- NDVI used extensively to detect and monitor vegetation conditions
- Often compare AVHRR and MODIS NDVI data
- What is it? Normalized Difference Vegetation Index, using two satellite channels:
- Ex: Use two different bands in AVHRR (Vis and NIR) and NDVI = (NIR – VIS)/(NIR +VIS)
- Range is between -1 and 1; healthier vegetation is near 1 and unhealthy near -1 or 0

NDVI

NDVI of the Panama Canal, most have high NDVI values because of the tropical "jungle" vegetation characteristics

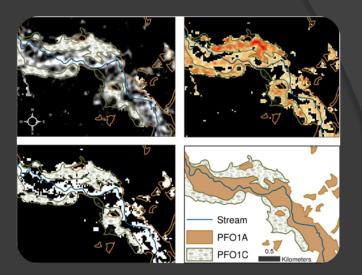
	The second second	Contraction of the local division of the loc		State of the local division of the local div	
-0.1	0.1	0.3	0.5	0.7	9.0

Synthetic Aperture RADAR Imaging Systems

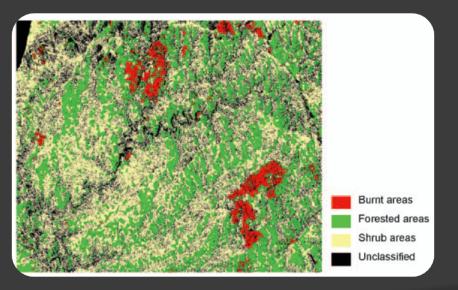
Synthetic Aperture RADAR

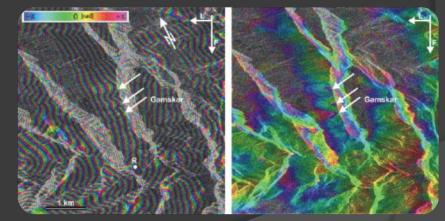
- Active remote sensing
- Operates in microwave portion of EM
- Can penetrate atmosphere in almost all conditions
- Can detect geometric structure, surface roughness, and moisture content

SAR


General Land Applications

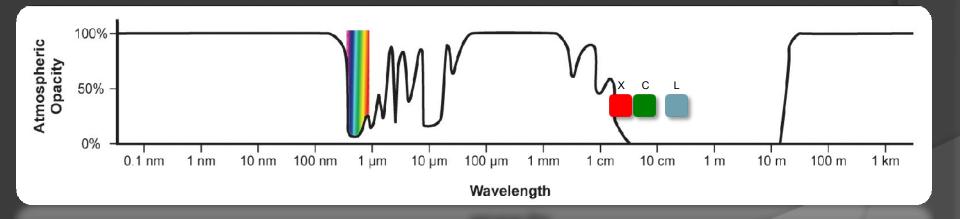
- Soil moisture and surface roughness
- Flood monitoring
- Delineation of burned areas and clear cuts
- Watershed modeling
- Map land cover in areas often not suitable for optical (e.g.—rainforests)
- Deformation detection and DEM generation (using InSAR)


Examples of SAR applications...


SAR/Optical urban mapping (Corbane et al. 2008)

Wetland Mapping (Lang et al. 2008)

Wildfire Perimeter Delineation (Gimeno et al. 2004)



Landside deformation detection with InSAR (Rott and Nagler 2006)

Main Bands In Use for SAR

Key

X Band (2.5cm – 3.75cm) C Band (3.75cm – 7.5cm) L Band (15cm – 30cm)

Picture Source:

http://en.wikipedia.org/wiki/File:Atmospheric_electromagnetic_transmittance_or_opacity.jpg

Timeline of SAR Missions

2010

2005

5

1975

2015

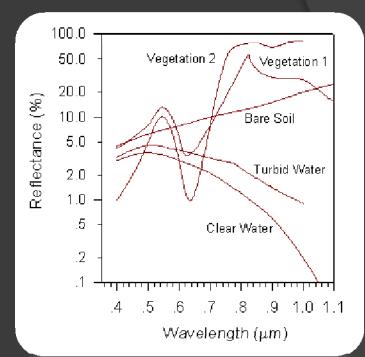
If mission has ended, end date in parentheses

Sensor	Satellite	Band	Spatial	Temporal	Country/Agency	
SAR	SEASAT	L	25m	3-17 days	USA	
SIR-A	Space Shuttle	L	40m	NA	USA	2000
SIR-B	Space Shuttle	L	25m	NA	USA	2000
SAR	ALMAZ-1	S	10m - 30m	1 - 3 days	USSR	
AMI	ERS-1	С	30m	3, 35, 168 days	ESA	
SAR	JERS-1	L	18m	44 days	Japan	
SIR-C	Space Shuttle	C,L,X	10m - 200m	NA	USA	199
AMI	ERS-2	С	30m	35 days	ESA	
SAR	RADARSAT-1	С	8m - 100m	1-3, 24 days	Canada	
SRTM	Space Shuttle	С, Х	30m	NA	USA	
ASAR	Envisat	С	30m - 1000m	35 days	ESA	1990
PALSAR	ALOS	L	10m - 100m	46 days	Japan	
SAR	RADARSAT-2	С	3m - 100m	1-3, 24 days	Canada	
SAR	TerraSAR-X	Х	1m - 16m	1-3, 11 days	Germany	
SAR	COSMOSkyMed	Х	1m - 100m	16 days	Italy	198
SAR	TanDEM-X	Х	1m - 16m	1-3, 11 days	Germany	190
InSAR	DESDynl	L	< 35m		USA	
SAR	SMAP	L	1km - 3km	2 - 3 days	USA	

2010/13 – DESDynl 2010/13 – SMAP

2009 – TanDEM-X 2007 – COSMO-SkyMed 2007 – TerraSAR-X 2007 – RADARSAT-2 2006 – ALOS

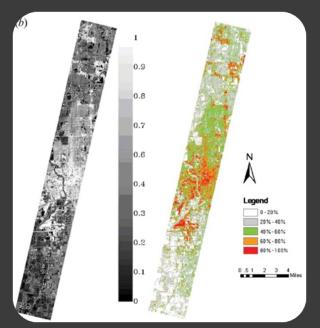
2002 – Envisat 2000 – SRTM (2000)

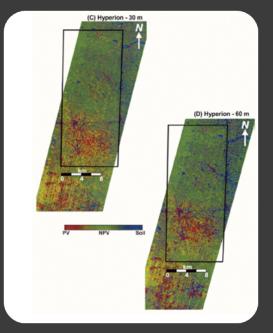

1995 – RADARSAT-1 1995 – ERS-2 1994 - SIRC (1994) 1992 – JERS-1 (1998) 1991 – ERS-1 (2000) 1991 – ALMAZ-1 (1992)

1984 - SIRB (1984) 1981 - SIRA (1981) 1978 - Seasat (1978)

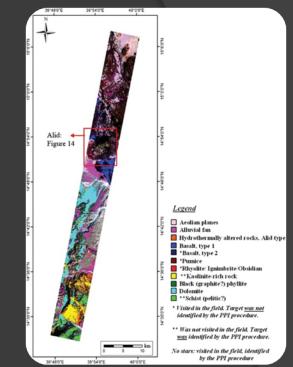
Hyperspectral Imaging Systems

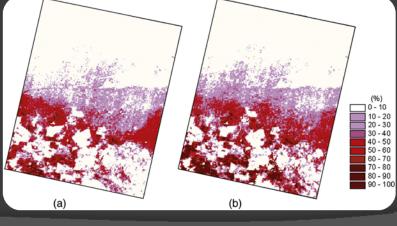
Hyperspectral


- Produce data in many narrow, contiguous spectral bands
 - Much finer spectral resolution than coarse multispectral data
- Can provide material identification and abundance estimates based on reflectance spectra


Hyperspectral General Land Applications

- Surface mineralogy
- Soil type and erosion
- Vegetation types
- Forest structure/function condition
- Plant stress
- Leaf water content
- Canopy chemistry
- Crop types and conditions
- Land degradation monitoring


Examples of spaceborne hyperspectral applications...


Impervious Surface Mapping (Weng, Hu, and Lu 2008)

Soil and vegetation fraction mapping (Asner and Heidebrecht 2003)

Mapping of hydrothermally altered rocks (Gersman et al. 2008)

Invasive species abundance (Walsh et al. 2008)

Timeline of Hyperspectral Missions

Sensor	Satellite	Bands	Spatial	Temporal	Country/Agency	2020	
Uuporion	EO-1	242 bands; Bango 0.26um - 2.6um	30m	16 days	USA		20?? – JHM
Hyperion	EO-1	Range 0.36µm - 2.6µm; Resolution 0.010µm - 0.011µm	3011	16 days	USA	2015	2013/16 – HyspIRI
		62 bands;	17-34m	17 days	ESA	2013	
CHRIS	Proba	Range 415-1050 nm;					
СПИЗ	PTUDA	Resolution 5-12 nm;					
		19 bands full resolution					2012 – EnMAP
		200+ bands;				2010	
		VNIR (420-1000 nm): 0.005nm;					
HSI	EnMAP	SWIR I (900-1390 nm) 0.003nm;	30m	4 days	Germany		
		SWIR II (1480- 1760 nm): 0.003nm;					
		SWIR III (1950-2450 nm): 0.001nm				2005	
HyspIRI	HyspIRI	380 to 2500 nm in 10nm bands	60m	19 days	USA	2000	
	Joint						
	Hyper				Canada/Italy		2001 – CHRIS/Proba
	Mission					0000	
			-	-		2000	2000 – Hyperion

References

Books and Journal Articles

- Asner, G. P., and K. B. Heidebrecht. 2003. Imaging spectroscopy for desertification studies: Comparing AVIRIS and EO-1 Hyperion in Argentina drylands. *Ieee Transactions on Geoscience and Remote Sensing* 41 (6):1283-1296.
- Corbane, C., J. F. Faure, N. Baghdadi, N. Villeneuve, and M. Petit. 2008. Rapid Urban Mapping Using SAR/Optical Imagery Synergy. *Sensors* 8 (11):7125-7143.
- Gersman, R., E. Ben-Dor, M. Beyth, D. Avigad, M. Abraha, and A. Kibreab. 2008. Mapping of hydrothermally altered rocks by the EO-1 Hyperion sensor, Northern Danakil Depression, Eritrea. *International Journal of Remote Sensing* 29 (13):3911-3936.
- Gimeno, M., J. San-Miguel-Ayanz, and G. Schmuck. 2004. Identification of burnt areas in Mediterranean forest environments from ERS-2 SAR time series. *International Journal of Remote Sensing* 25 (22):4873-4888.
- Lang, M. W., E. S. Kasischke, S. D. Prince, and K. W. Pittman. 2008. Assessment of C-band synthetic aperture radar data for mapping and monitoring Coastal Plain forested wetlands in the Mid-Atlantic Region, USA. *Remote Sensing* of *Environment* 112 (11):4120-4130.
- Lillesand, T., R. Kiefer, and J. Chipman. 2008. *Remote Sensing and Image Interpretation*. Hoboken, NJ: John Wiley & Sons Inc.
- Rott, H., and T. Nagler. 2006. The contribution of radar interferometry to the assessment of landslide hazards.
- Walsh, S. J., A. L. McCleary, C. F. Mena, Y. Shao, J. P. Tuttle, A. Gonzalez, and R. Atkinson. 2008. QuickBird and Hyperion data analysis of an invasive plant species in the. Galapagos Islands of Ecuador: Implications for control and land use management. *Remote Sensing of Environment* 112 (5):1927-1941.
- Weng, Q. H., X. F. Hu, and D. S. Lu. 2008. Extracting impervious surfaces from medium spatial resolution multispectral and hyperspectral imagery: a comparison. *International Journal of Remote Sensing* 29 (11):3209-3232.

References

Websites

- http://msl.jpl.nasa.gov/QuickLooks/seasatQL.html
- http://icesat4.gsfc.nasa.gov/missions/seasat.html
- http://www.esa.int/esaEO/SEMGWH2VQUD_index_0_m.html
- http://www.asc-csa.gc.ca/eng/satellites/radarsat1/default.asp
- http://www.asc-csa.gc.ca/eng/satellites/radarsat2/default.asp
- http://gs.mdacorporation.com/rsic/index.asp
- http://www.dlr.de/tsx/main/mission_en.htm
- https://cosmo-skymed-ao.asi.it/asi/asi?type=20&cmd=aolist&aoname=cosmo
- http://www.dlr.de/hr/en/desktopdefault.aspx/tabid-2317/3669_read-5488/
- http://desdyni.jpl.nasa.gov/
- http://smap.jpl.nasa.gov/mission/
- http://eo1.usgs.gov/index.php
- http://earth.esa.int/proba/
- http://www.enmap.org/
- http://hyspiri.jpl.nasa.gov/
- http://news.eoportal.org/policy/060807_hyperspectral.html
- NOAA definitions: http://www.csc.noaa.gov/crs/definitions/NDVI.html
- Modis: http://modis.gsfc.nasa.gov/
- USGS Aster overview: https://lpdaac.usgs.gov/lpdaac/products/aster_overview
- Carribean and South America NDVI. http://www.fas.org/irp/imint/docs/rst/Sect6/Sect6_11.htm
- http://launch.geoeye.com/LaunchSite/about/fact_sheet.aspx
- http://www.satimagingcorp.com/satellite-sensors/quickbird.html
- http://geo.arc.nasa.gov/sge/health/sensor/sensors/ikonos.html
- http://eospso.gsfc.nasa.gov/eos_homepage/mission_profiles/docs/Orbview-2_SeaWiFS.pdf
- http://www.digitalglobe.com/index.php/85/QuickBird
- http://hdds.usgs.gov/docs/International_Charter_Satellites.pdf