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Executive summary 

Earth observation satellites acquire optical imagery on any point of the Earth at different resolutions, in terms of geometry, 

spectrum, radiometry and time. Thanks to the ability of last generation satellites, stereo images with along-track stereo 

viewing and ground sample distance below 1m can be acquired along one orbit path with a small time delay. Then standard 

photogrammetric procedures are followed to orient the images, generate epipolar images and extract the digital surface 

models (DSM) with image matching procedures. In this report the DSMs were extracted from GeoEye1 stereo images over 

Dakar and Guatemala City and from WorldView-2 stereo images over Panama City, Constitucion, Kabul, Teheran, 

Kathmandu and San Salvador using ERDAS LPS and eATE tools. Ground points were not available. The DSMs were not 

edited in post-processing, nor improved by measuring additional seed points to be used as mass points. 

The analysis of the DSMs show that the surface quality is related to the acquisition parameters (i.e. satellite and sun 

elevation), the geometric processing (quality of initial orientation and availability of GCPs), the matching strategy (in our 

case, eATE tool in ERDAS LPS) and the terrain characteristics (i.e. morphology, height range, land cover, water, and cloud 

cover). On the acquisition point of view, the base-on-height ratio of the stereo acquisition, and consequently the 

convergence angles, is crucial for automatic DSM generation.  

On a theoretical point of view, the larger is the B/H ratio, better is the stereoscopy and the height estimation; on the other 

hand images acquired from very different viewing angles contain certain disadvantages. First of all, they show occlusions 

in urban areas occlusions due to buildings, therefore corridors between buildings cannot be modeled properly. In addition 

large angles produce longer shadows, and therefore low-texture homogeneous areas where image matching does not 

perform well.  

As the image processing is concerned, the quality of sensor geometric orientation determines the correctness of the 

estimated surface height in object space. In general ground control points are recommended to improve the image geo-

location accuracy, but in case of remote areas or in emergency situation, this information cannot be recovered. Anyway it is 

recommended to guarantee the relative orientation between images composing a pairs and between pairs by manually 

measuring a sufficient number of well distributed common (tie) points in the images. In fact the inaccurate relative 

orientation of overlapping strips might cause height steps in the final DSM.  

With regard to the sensor, the quality of GE1 and WV2 images is good and the very high spatial resolution allows detailed 

modeling of any terrain type. The availability of multispectral channels is favorable for future operation, like cloud and 

water masking, object identification. 

The report demonstrates the potential of DSM from VHR imagery for the extraction of value-added 3D information, like 

building height, relevant for post-disaster and post-crisis needs assessment (PDNA) activities, monitoring and simulation of 

natural hazards. 
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1. Introduction 

Natural hazards such as floods, earthquakes, wild-land fires, landslides, severe storms, tropical cyclones or volcanic 

eruptions are causing loss of human lives and livelihoods, the destruction of economic and social infrastructure, as well as 

environmental damages (Tralli et al. 2005, Zischg et al. 2011). Remote sensing derived high resolution digital surface 

models (DSMs) are a key data for the extraction of 3D information (i.e. building heights, city models, terrain 

geomorphology) used in accurate risk simulation of natural hazards and damage assessment (Narushige 2001, Gruber-

Geymayer et al. 2006, Fraser et al. 2008, Li et al. 2010, Liu et al. 2011). The information can then be used for flood 

prediction, landslide monitoring, earthquakes, volcano eruptions and ecosystem modeling (Gamba and Houshmand 2002, 

Crowley et al. 2003, Glaze and Baloga 2003, Stevens et al. 2003, Delacourt et al. 2007, Nichol et al. 2009, Hu et al. 2008, 

Kim et al. 2011). 

Earth observation satellites acquire SAR and optical imagery on any point of the Earth at different resolutions, in terms of 

geometry, spectrum, radiometry and time. The number of Earth-observation platforms equipped with very high resolution 

optical imagers with stereo capability for DSM generation is increasing (Deilami and Hashim 2011).  The spatial resolution 

of 0.5m overlaps with aerial images, enabling the discrimination of fine details, like buildings and individual trees. The 

radiometric and geometric quality of the satellite images can be compared with original digital aerial images. The 

orientation has been simplified by using rational polynomial functions (Grodecki and Dial 2003) and the direct sensor 

orientation has been improved, allowing, in some cases, the image processing and DSM generation without ground control 

information (Jacobsen 2011). With the improved possibility of stereoscopic coverage within the orbit, 3D information can 

be accurately extracted and realistic 3D scenarios can be generated. On a spectral point of view, multispectral bands are 

available in the visible and infrared domains for more robust analyses and discrimination of spectral signatures. For 

instance, WorldView-2, fully operational since January 2010, offers very high spatial and spectral information, with four 

additional spectral bands centered in the red-edge, yellow, coastal and near-infrared wavelengths. Complementing the high 

spatial and spectral resolution, VHR sensors are mounted on highly agile platforms, which enable rapid targeting and a 

revisit time up to 1 day. 

The Joint Research Center (JRC) of European Commission in Ispra (Italy) uses VHR imagery for disaster risk assessment, 

settlements analysis, image information mining and post-disaster needs assessment (PDNA). In fact high resolution (1-5 m 

ground sampled distance -GSD) and very high resolution satellite (<1m GSD) images are selected and processed aiming to 

support international scientific effort to map human settlements globally. For selected areas of the world the JRC extracted 

accurate 3D information, which is crucial for population and built-up volume estimation, change detection and simulations 

with realistic scenarios.  

This report describes our experience on 3D surface modeling of very large urban areas using satellite VHR optical sensors: 

GeoEye-1 (GE1) on Dakar and Guatemala City and WorldView-2 (WV2) on Panama City, Constitucion, Kabul, Teheran, 

Kathmandu and San Salvador. 

The analysis of the DSMs takes into accounts the characteristics of the sensors and imagery, the processing approaches, the 

terrain and land characteristics, and the data volume. As reference digital surface models at higher resolution from aerial 

platforms are not available, the quantitative analysis of our results is assessed through accurate visual interpretation, 

analysis of height profiles along transects, and comparison with global elevation models generally employed by the 

scientific community as surface information. 

The report is organized as follows. After a brief description of state-of-the-art HR and VHR sensor characteristics, the 

datasets and the processing workflow are presented, and then the quality of the generated DSMs is critically analyzed. The 

potential of accurate DSMs for natural hazard applications is demonstrated through the extraction of added-value 

information, like the building height.  Conclusions and recommendations will close the report.  

 

2. Characteristics of HR and VHR optical sensors 

 Image acquisition 2.1.

Earth observation optical sensors mounted on satellites acquire mainly push-broom mode. The imaging system of a push-

broom sensor consists of an optical instrument (usually a lens or a telescope) and Charge Coupled Devices (CCD) lines 

assembled in the focal plane. The combination of the optical systems and the CCD lines allows the acquisition of images in 

the push-broom principle (Poli 2007). While the platform moves along its trajectory, successive lines are acquired 

perpendicular to the satellite track and stored one after the other to form a strip. In case of multispectral sensors, a strip is 

generated for each channel. Among the different array designs, in most cases the chips are placed along a single line or in 

two or more segments staggered along the flight direction (ex. SPOT-5 HRG) or butted with some overlap (ex. Quickbird) 

to increase the image ground resolution through a specific geometric and radiometric post-processing. Table 1 summarizes 

the main characteristics of VHR and HR sensors and their imagery.  
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Table 1. Summary of existing VHR and HR push-broom scanners (Poli and Toutin, 2012). PAN: panchromatic, MB: 

number of multispectral bands, GSD: ground sample distance, B/H: base/height. 

Platform   
Sensor 

Country 
Month/Year 

Height 
(km) 

Inclination 
(º) 

PAN 
GSD  
(m) 

MB 
/GSD 
(m) 

Swath 
(km) 

Field of 
regard (º) 

Revisit 
time 

(days) 

Stereo 
B/H 

Nb.of 
bits 

IRS-C/1D 
PAN 

India  
07/1995 

817 
98.6 

5.8 None 70 ±26 across 5 Across  
Up to 1 

6 

IKONOS-2 
OSA/TDI 

USA   
09/1999 

680 
98.2 

0.8
1
 4/4 11 45

1
(360º) 2-3.5 Agile  

Variable 
11 

Kompsat-1 
EOC 

Korea  
12/1999 

685 
98.13  

6.6 None 17 ±45
2
 across 3 Across   

Up to 1.1 
8 

EROS A1 
PIC/TDI 

Israel  
12/2000 

480 
97.4 

1.8
3
 None 13

3
 45 (360º) 2-4 Agile  

Variable 
11 

QuickBird-2 
BHRC60/TDI 

USA  
10/2001 

450 
52 

0.61  4/2.44 16 45 (360º) 1-3  Agile  
Variable 

11 

SPOT-5 
HRG 

France  
05/2002 

822 
98.7 

5/3.5  4/10  60 ±27 across 3-6 Across   
Up to 1 

8 

Orbview-3 
OHRIS 

USA   
06/2003 

470 
97  

1 4/4 8 50 (360º) 1-3 Agile  
Variable 

11 

Formosat-2 
RSI/TDI  

Taiwan  
05/2004 

891 
99.14 

2 4/8 24 45 (360º) 1 Agile  
Variable 

8 

Cartosat-1 
PAN (2) 

India  
05/2005 

618 
97.87 

2.5 None 30  ±26 across 5 Along  
0.62 

10 

Beijing-1  
CMT 

China  
10/2005 

686 
98.2 

4 None 24 ±30 across 4 Across   
Up to 1.1 

8 

TopSat 
AOC/TDI 

UK  
10/2005 

686 
98.2  

2.5 3/5 15 ±30 across 4 Across   
Up to 1.1 

11 

ALOS 
PRISM 

Japan   
01/2006 

692 
98.16 

2.5 None 35 ±1.5 across 46 Along    
0.5/1.0 

8 

EROS B 
PIC-2/TDI 

Israel  
04/2006 

~500 
97.4 

0.7 None 14 45 (360º) 1-3 Agile  
Variable 

10 

Kompsat-2 
MSC   

Korea  
07/2006 

685 
98.13 

1 4/4 15 30 along 
56  across 

2 Agile   
Variable 

10 

Cartosat-2 
PAN 

India  
01/2007 

635 
97.92 

0.8 None 9.6  45 (360º) 1-4 Agile   
Variable 

10 

WorldView-1 
PAN/TDI 

USA 
09/2007 

496 
97.2 

0.5 8/2 17.6 45 (360º) 2-6 Agile   
Variable 

11 

CBERS-2B 
HRC 

China-Brazil 
11/2007 

778 
98.5 

2.5 None 27 Few 5 Along   
Up to 1 

8 

GeoEye-1 
GIS 

USA 
09/2008 

681 
98 

0.41 4/1.65 15.2 60 (360º) 1-3 Agile 
Variable 

11 

WorldView-2 
WV110 

USA 
09/2008 

770 
97.2 

0.46 8/1.85 16.4 45 (360º) 1-4 Agile 
Variable 

11 

 

 Stereo acquisition 2.2.

According to the stereo acquisition mode, we can distinguish standard across-track systems, standard simultaneous multi-

view along-track systems and agile single-lens systems. 

The standard across- and along- track sensors include very popular satellite constellations generally developed by the 

national space agencies, like the SPOT series by the Centre national d’Etudes Spatiales (CNES), the French space agency, 

the two IRS and CartoSat-1 (or IRS P5) by the Indian Space Research Organization (ISRO), ALOS-PRISM by the Japan 

aerospace Organization (JAXA) and many others (Toutin, 2009). 

In the standard across-track configuration, the CCD lines and one optical system are generally combined with a mirror or 

similar that rotates from one side of the sensor to the other across the flight direction. The across-track angles are usually up 

                                                 
1
 The spatial resolution at nadir is 0.81 m; the field of regard can be up to 60º but with 2-m resolution. 

2
 For cartographic mapping, up to 30º across-track viewing is only used. 

3
 1m resolution but with 6.25-km swath is obtained by applying “over-sampling” 
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to 30°, but can reach larger values. According to this configuration, the stereo images are collected from different orbits at 

different dates, with the overlapping area across the flight direction.  This multi-date across-track stereo configuration 

generates thus temporal variation between the images.  Examples are SPOT-1-4 HRV, SPOT-5 HRG, IRS-1C/1D PAN, 

Beijing-1 CMT by the People Republic of China, Kompsat-1 EOC by KARI (Korea Aerospace Research Institute).  

In the standard along-track configuration, two or more strips are taken simultaneously from the same orbit at different 

angles along the flight direction. For each viewing direction there are one lens and one set of CCD lines placed on the focal 

plane. The along-track angles are generally fixed and the B/H ratio constant, different for each satellite. This same-date 

along-track configuration thus avoids the temporal variation between the images. Examples of HR sensors with this 

configuration are SPOT-5 HRS, ALOS-PRISM and Cartosat-1. 

The third class of sensors uses an agile configuration that was first introduced in IKONOS-2 in 1999. Built and operated by 

private enterprises, those sensors are carried on small satellites flying along sun-synchronous and quasi-polar orbits and 

provide very high resolution imagery in mono or stereo mode using a flexible single-lens optical system. For stereo 

viewing or frequent temporal coverage, they have the ability to rotate on command around their cameras axes and view the 

target from different directions, in forward mode (from North to South) or reverse mode (from South to North). Therefore, 

along-track and across-track stereo pairs of a particular area of interest are planned in advance and acquired on almost any 

part of the Earth surface. The general limit for off-nadir angles is 45º, but larger values can be used in some specific 

situations to the detriment of a large degradation of the spatial resolution. Some agile sensors have a synchronous 

acquisition mode, thus the satellite speed and the scanning speed are equal, and the viewing angle is constant during one 

image acquisition. Examples are IKONOS-2, Kompsat-2 and Formosat-2 RSI by NSPO (National Space Program Office of 

China). On the other hand some agile sensors scan the Earth in asynchronous mode. This is the case of Quickbird, WV1 

and WV2 (DigitalGlobe), GE1 (GeoEye), EROS-A and –B (ImageSat International), Orbview-3 (Orbimage) and TopSat 

(QinetiQ). According to this design, the platform velocity is higher than the scanning one; it means that the satellite rotates 

continuously so a CCD line scans longer a line on the ground, but the geometry is less stable. The scanning velocity can 

also be faster than the footprint speed for WV1/2 (24000 lines/s) and GE1 (20000 lines/s). 

The success of agile single-lens systems for the acquisition of VHR stereo imagery is confirmed by its planned use in future 

missions too, like Pleiades-1, Pleiades-2 by SpotImage, that are set for lunch in late 2011 or early 2012. The Pleiades 

sensors will acquire imagery at 50 cm ground sample distance (GSD) with the possibility to realize a two-image 

stereoscopic acquisition with an additional quasi vertical image (tri-stereoscopy), thus enabling the user to have an image 

and its along-track stereoscopic environment. 

 Processing levels 2.3.

Images acquired by VHR sensors are distributed with a certain level of processing; unfortunately the range of terminology 

used to denominate the same type of image data is different at each data provider.  Standardization should be better defined, 

mainly for the convenience of end-users. In general, we can distinguish three main processing levels. 

 Raw images with only normalization and calibration of the detectors (e.g. level 1A for SPOT, EROS and 

Formosat, 1B1 for ALOS, Basic Imagery for QuickBird/WorldView) without any geometric correction, except 

sometimes for the interior orientation, are satellite-track oriented. In addition, metadata related to sensor, satellite 

(ephemeris and attitude) and image are provided. Raw images are preferred by photogrammetrists working with 

3D physical models and should be now favoured by the remote sensing community, too, to avoid residual errors in 

the geometry and multiple resampling of the radiometry in the processed products. 

 Geo-referenced images (e.g. level 1B for SPOT, 1SYS for Cartosat, Basic Standard and Basic Stereo 1B for 

QuickBird/WorldView, 1G for Landsat-ETM+) corrected for systematic distortions due to the sensor, the platform 

and the Earth rotation and curvature; they are satellite-track oriented. Generally, few metadata related to sensor 

and satellites are provided; some of metadata are related to the 1B processing. 

Map-oriented images, also called geocoded images, (e.g. level 2A for SPOT, Geo Standard for IKONOS, Ortho Ready 2A 

for Quickbird/WorldView, 1B2 for ALOS) corrected for the same distortions as geo-referenced images and North oriented.   

Generally, very few metadata related to sensor and satellites are provided; most of metadata are related to the 2A 

processing and the ellipsoid/map characteristics.  

3. DSM generation 

 Data description 3.1.

Stereo images acquired by GE1 on Dakar and Guatemala City and by WV2 on Panama City, Constitucion (Chile) , Kabul, 

Teheran, Kathmandu and San Salvador were used for DSM extraction. Table 2 summarizes the main characteristics of the 

project areas and collected scenes.  

 



Page 8  

 

Table 2. Characteristics of the datasets: city and country, sensor, processing level, number of images / number of strips, 

date of acquisition, T: Time of acquisition of 1
st
 line, A: off-nadir angle (in degrees), P: ground spatial resolution of 

panchromatic channel (in meters), OR: Ortho Ready. 

CITY 
COUNTRY 

SENSOR PROCESSING 
LEVEL 

IMAGES /STRIPS DATE    
(sec) 

STEREO1 STEREO2 

      A P A P 
Dakar GE1 GeoStereo 8/2 18-Jan-10 65 24.2 0.50 -25.9 0.50 
(SENEGAL)    08-Mar-10 62 17.7 0.50 -24.1 0.50 
          
Panama City WV2 StereoOR2A 4/2 26-Dec-09 71 16.6 0.52 -16.9 0.52 
(PANAMA)    26-Dec-09 75 11.6 0.49 -5.7 0.57 
          
Guatemala City GE1 GeoStereo 6/2 28-Feb-10 66 24.5 0.45 -17.2 0.46 
(GUATEMALA)    11-Mar-10 45 -15.8 0.43 21.6 0.47 
          
Constitucion WV2 Stereo1B 10/2 20-Dec-10 44 16.4 0.52 7.9 0.49 
(CHILE)    20-Dec-10 8 11.6 0.53 -23.6 0.56 
          
Kabul WV2 StereoOR2A 20/1 27-Jun-10 95 7.6 0.47 -33.6 0.60 
(AFGHANISTAN)          
          
Teheran WV2 Stereo1B 19/3 03-Jun-10 62 27.1 0.55 -0.4 0.46 
(IRAN)    03-Jun-10 107 16.0 0.49 -31.7 0.56 
    03-Jun-10 97 7.5 0.47 -34.4 0.73 
          
Kathmandu WV2 Stereo1B 20/3 07-Jun-10 96 7.4 0.47 -34.3 0.75 
(NEPAL)    07-Jun-10 105 15.8 0.51 -31.6 0.67 
    07-Jun-10 61 29.2 0.65 -0.2 0.47 
          
San Salvador 
(EL SALVADOR) 

WV2 StereoOR2A 16/1 22-Dec-09 90 -10.5 0.48 -32.0 0.69 

          

 

In all datasets the stereo images have along-track stereoscopy. In fact WV2 and GE1 belong to the last generation agile 

satellite systems, able to rotate on their axis and acquire stereo images along-track on the same orbit. As a result of this 

acquisition mode, the time difference between the two stereo images composing a stereo pair is in the range of seconds or 

minutes. The advantage of a small time interval is that the sun illumination conditions are almost constant and changes in 

the scenario are limited to moving objects, like vehicles. Due to the large extent of the cities (up to 1’500 km
2
), the datasets 

generally consist of multiple pairs (or couples) of stereo images acquired by the same sensor and cut in tiles. If the stereo 

pairs are acquired in the same day, the time difference between their acquisitions is less than 1 hour. In case of multiple 

dates, differences are up to 3 months (i.e. Dakar). 

The viewing angles and consequently the convergence angle and B/H ratio are not the same for all stereo pairs. Different 

situations may occur: a) one quasi-nadir image (acquisition angle close to the vertical) and one off-nadir image (backward 

or forward viewing), as in Figure 1; b) one backward and one forward image with symmetric angles, as in Figure 2 and c) 

one backward and one forward image with asymmetric angles and large convergence angle, as shown in Figure 3. Large 

viewing angles determine the presence of occlusions, mainly in urban areas, larger shadows, and larger GSD, with respect 

to quasi-nadir acquisitions. 

Areas like San Salvador and Kabul, smaller than 15-17 km in width, were scanned in one path. In case of larger areas the 

images were acquired in the same day from two (Panama City, Guatemala City, Constitucion) or three (Teheran or 

Kathmandu) different paths, or in different days (Dakar). In each path the acquisition angles are almost constant, but they 

change between paths. For example, for Teheran the stereo angles in the first path are 0º and -27º, while in the second and 

third paths they are 16º and -31.7º, and 7.5º and -34.4º respectively. This might cause differences in the DSM on the 

overlapping areas between paths, as the sensor performance for DSM generation depends on the B/H ratio, and 

consequently on the incidence angles of the stereo images. 

As the processing level is concerned, GE1 stereo images were provided at GeoStereo processing level, which corresponds 

to Ortho Ready level (2A), while the WV2 ones were provided in raw level 1B or 2A. In all cases, the rational polynomial 

coefficients (RPC or RPB formats) available for each image or tile were used as geo-location information for the geometric 

processing. 

In general the geo-location accuracy of the RPC depends on the image processing level, the terrain slope and the 

acquisition viewing angles (Toutin, 2004, Poli and Toutin, 2012). In flat areas like in Panama City (level 2A, -16º and 16º 

viewing angles) the relative accuracy of the RPC between two images composing a stereo pair in is approximately 30m, 
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while in the mountain area around Kathmandu (level 1B, -31º and 15º viewing angles, Figure 3) the relative accuracy 

between the stereo images reaches 300m. 

With regard to the landscape, the datasets mainly cover inhomogeneous urban areas with different layout: dense areas with 

small buildings, downtown areas with skyscrapers, residential areas, industrial areas, forests, open areas and water (sea, 

lakes, and rivers). In addition images include rural hilly and mountain areas surrounding the cities, with important height 

ranges: 2’400m in case of Kathmandu, almost 2’300m in case of Teheran, 1’100m in case of Guatemala City, 1’000m in 

case of Kabul. Some regions were not visible in the images because occluded by clouds or very dark cloud shadows, as in 

Panama City and Kathmandu cities. 

 

  
Figure 1. Stereo image acquisition in Teheran project. Left: forward viewing direction 27º, right: nadir viewing direction. 

The time difference between the two acquisitions is about one minute. 

 

  
Figure 2. Stereo image acquisition in Panama City project. Left: forward viewing direction 16º, right: backward viewing 

direction -16º. The time difference between the two acquisitions is about one minute. 

 

  
Figure 3. Stereo image acquisition in Kathmandu project. Left: viewing direction -31º, right: viewing direction +15º. The 

time difference between the two acquisitions is about 100 seconds. 

 

 Image processing and DSM generation 3.2.

In this work we followed the classical photogrammetric workflow available in ERDAS Leica Photogrammetric Suite (LPS) 

environment (ERDAS LPS, 2011) for the processing of the stereo images and DSM generation (Figure 4).  

 

© DigitalGlobe © DigitalGlobe 

© DigitalGlobe © DigitalGlobe 

© DigitalGlobe © DigitalGlobe 
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Figure 4. Photogrammetric workflow for 3D information extraction from stereo imagery. 

 

The processing was applied separately to each dataset described in Table 2. On the orientation point of view, the geometric 

model for space borne push-broom sensors based on RPC was used. After importing the images with their RPC and 

metadata information and generating the pyramids, common tie points in two or more images were measured in order to 

ensure the relative orientation between the two images of the same stereo pair and between different stereo pairs that 

overlaps along or across the flight direction. The aim was to link the images and get a stable block; therefore a minimum of 

5 tie points for each pair were measured manually by an operator. The general rule for tie point measurement is to select 

points on well-defined and fixed/stable features on the terrain (i.e. crossing lines, road signs, etc., Figure 5) and get a 

homogeneous distribution in the images scenes (Figure 27 to Figure 33 in Annex A). In total a minimum of 20 points for 

Guatemala City project and a maximum of 98 points for Teheran project were measured (Table 3). 

 

 
Figure 5. Example of tie point selection in Panama City project. 

 

Automatic tie point detection modules available in commercial software packages were tested as well, but none of them did 

produce accurate and reliable results, due to evident mismatches and point extraction on non-fixed or moving objects, like 

shadows or cars. Figure 27 to Figure 33 represent the projects, as set up in ERDAS LPS. Areas without tie point 

measurements were occluded by clouds, covered by water (i.e. rivers, lakes, sea) or image borders.  

© DigitalGlobe © DigitalGlobe 
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The rigorous photogrammetric processing for the orientation of the images require ground control information to orient the 

block in a given absolute ground system. In our cases ground measurements were not available. Therefore we guaranteed 

that at least the relative orientation was correct through the analysis of its standard deviation (Table 3). 

The DSM was generated in the ERDAS LPS module eATE (enhanced Automatic Terrain Extraction) with stereo image 

matching, which aims at finding dense and robust correspondences between stereo images and estimate their 3D 

coordinates in object space. The matching procedure in eATE is pyramid based, that is, it starts from a high image pyramid 

and terrain range is initialized with a global DEM generated with 3-second SRTM DEM; at each pyramid level, terrain 

range updated from matches on higher pyramid is used to limit search range at current pyramid, and matching results from 

current pyramid will be used to update terrain range at next lower pyramid. By this way, the ambiguity of terrain variation 

is reduced at each pyramid level and search range should be reduced as well and converge to a small value, which is a 

function of terrain slope, accuracy, and pixel size (Xu et al., 2008). Seed points were not added manually as mass point to 

help the matching and improve the DSM. Regions occluded by clouds were manually masked by an operator in image 

space and resulted with no-data value in the final DSM.  

Taking into account the ground spatial resolution of the input images, the DSMs were generated with 2m grid spacing 

(about 4 times the pixel size of the panchromatic channels). 

In case of projects with overlapping stereo pairs (i.e. Teheran, Kathmandu, Dakar, etc.), the DSM is computed separately 

for each stereo pair and then the single DSMs are merged using linear interpolation. Even if the blocks are relatively 

orientated, residuals propagate during DSM generation and produce small vertical steps between overlapping DSMs. In 

these cases, additional tie points are manually measured in the images in the critical area, the relative orientation 

recomputed and the DSM generated again. The final DSMs are then masked from water bodies (rivers, lakes, oceans, seas) 

using OpenStreetMap (OpenStreetMap, 2011) free datasets. Additional manual editing, like blunder filtering or manual 

measurement of seed (mass) points, was not applied to improve the quality of the DSMs. 

Finally the most nadir images were ortho-rectified on the DSMs and ortho-images at 0.5m grid spacing were generated. 

Table 3 summarizes the area characteristics (size, height range) and the processing steps. 

 

Table 3. Summary of terrain characteristics (area, min and max elevation above WGS84 ellipsoid) and processing for each 

city. 

CITY Area 
(km

2
) 

Height range (m) Tie Points St.dev. 
(pixels) 

Occlusion 
by Clouds 

Overlapping 
between strips 

Water 
Masking 

Dakar 410 Min:-18 
Max:73 

64 0.11 no yes yes 

Panama City 241 Min:-24 
Max:320 

24 0.05 no yes yes 

Guatemala City 581 Min:1205 
Max:2305 

20 0.05 yes yes yes 

Constitution 242 Min:-4 
Max:611 

34 0.05 no yes yes 

Kabul 900 Min:1663 
Max:2671 

29 0.06 no no no 

Teheran 1514 Min:943 
Max:3228 

98 0.09 yes yes no 

Kathmandu 1501 Min:385 
Max:2770 

56 0.05 yes yes no 

San Salvador 273 Min:382 
Max:1169 

15 0.03 no no yes 

 

 DSM Quality analysis 3.3.

The objective of this analysis is to evaluate how the earth surface has been modeled in different scenarios, in relation to the 

characteristics of the source images (ground resolution, viewing angles, and radiometry) and terrain (cover, typology, 

texture). In general the DSMs were successfully generated from all datasets with both sensors (GE1 with processing level 

2A and WV2 with processing levels 1B and 2A). The overviews of the DSMs extracted in the eight projects are reported 

from Figure 35 to Figure 42 in Annex B. 

In mountain areas with large elevation difference, like Teheran, Kabul and Guatemala City, the shape of valleys and 

mountain sides and ridges is well modeled in the DSM (Figure 40). In comparison to SRTM, using VHR images it is 

possible to extract finer DSM and to filter the Digital Terrain Model (DTM) at higher grid space. This is confirmed by the 

comparison of the height profiles of the WV2 DTM and the SRTM in Teheran (Figure 7).  

In rural areas, cultivated parcels can be distinguished, together with paths and lines of bushes and trees along their sides. In 

case of forest, the DSM clearly shows a different height with respect to adjacent cultivated areas or grass. It is even 

possible to distinguish roads and rivers crossing forests (Figure 8).  In general rural areas are well modeled both in 

mountain, hilly and flat terrain. 
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In urban areas building agglomerations, blocks with different heights, the road network, some infrastructures (i.e. stadium, 

bridges, etc.) and rivers are generally well outlined both in flat and hilly terrains (Figure 9). In residential and industrial 

areas it is possible to distinguish single buildings and lines of trees (Figure 10). In some cases the roof structures of large 

and complex buildings are modeled (Figure 36). 

The quality of the DSMs in urban areas was also evaluated through the height profiles along transects. From the analysis of 

the profiles in Figure 12 and Figure 13 in residential and dense urban areas in Panama City, buildings are highlighted by the 

presence of peaks in the DSM and confirmed by visual interpretation in the corresponding orthophoto. 

 

 

 

Figure 6. DSM of mountain area around Teheran.   Figure 7. Height profile in WV2 DTM (blue) and SRTM 

(red) and zoom in the corresponding surface models (above: 

SRTM, below: WV2 DTM).  

 

   
Figure 8. Left: DSM of Rural area in Constitucion. Right: 

Original image (panchromatic). 

Figure 9. DSM of dense urban area on flat and hilly terrain 

in Dakar. 
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Figure 10. DSM of residential and rural area on flat terrain 

in Panama City. The black oval highlights a line of tree. 

Figure 11. Left: DSM of Panama City Airport. Right: 

original image (pan sharpened). 

 

  
Figure 12. Height profiles from DSM in residential urban 

area in Panama City along one transect. Heights are 

expresses in meters. 

Figure 13. Height profiles from DSM (blue) and DTM 

(green) in dense urban area in Panama City along one 

transect. Heights are expresses in meters. 

 

Failures in surface modeling can be caused by a number of factors, which are summarized in Table 4. The image absolute 

geo-location accuracy, which depends on the viewing angle, the processing level and terrain morphology, influence the 

estimation of the height in object space, and therefore the quality of the absolute geo-location of the final DSM and related 

products (DTM, orthophotos, 3D objects). The measurement of accurate and well distributed ground control points (GCPs) 

in the images would solve the problem, but this information is often not available. The accuracy of the relative orientation 

between two images forming a pair is crucial for the epipolar geometry and image matching, while the relative accuracy 

between overlapping stereo pairs is responsible of height steps in the final DSM (Figure 14). In both cases the relative 

orientation can be improved by manually measuring a sufficient number of common tie points between the images. 

Low-textured and homogenous areas origin blunders in the DSM, as the automatic matching of the homologous points 

fails. This is typical in homogeneous land cover (i.e. bare soil, parking lots) and shadow areas and is caused by a 

combination of sun and satellite elevations and surface morphology (i.e. mountain faces). In Figure 15 building shadows, 

highlighted in the yellow ellipse, bring inaccuracies in the DSM. The use of a better initial DSM as initial approximation 

can help the matching procedures in these critical areas. If a DSM is not available, so-called seed points can be measured in 

stereo mode in the pairs and imported in the matching procedure as mass points. In addition, an ad-hoc radiometric 

processing can enhance details in low-textured regions and help the matching procedure. 

Occlusions are generally present in urban areas and are due to tall buildings or trees, in combination with the acquisition 

viewing angles. In case of occlusions, corridors between buildings are not modeled correctly (Figure 16). 

Objects moving during the acquisitions of the stereo images, like vehicles, lead to small blunders, as highlighted in the blue 

circles in Figure 15. They can be removed with manual editing or filtering. 

Local blunders in correspondence of special radiometric effects, like spilling and saturation on roof faces due to the 

acquisition geometry and the surface type and inclination (i.e. roof faces in grass), may also occur.  
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Figure 14. Height step (in the black rectangle) between the 

DSMs obtained from two different stereo pairs (Dakar). 

Figure 15. Example of effects of shadows and moving 

objects in the DSM (Panama City). Above: pansharpened 

nadir scene; below: DSM 

 

     

Figure 16. Example of corridor occlusion due to tall buildings; (a) and (b): stereo images; (c) resulting DSM (Dakar). 

Table 4. Summary of factors influencing the DSM quality.  

Factor Cause/Dependency Effect in DSM  Possible solution 

Poor initial absolute geo-location 
accuracy 

Viewing angles; 
Processing level; 
Terrain shape;  

Height steps; 
Poor final absolute geo 
location quality; 

GCPs 

Time interval between 
overlapping acquisitions 
 

Large extent; 
Swath width of VHR sensors; 

Height steps in overlapping 
areas 

Tie points 
measurements  

Differences in the images Moving objects (vehicles) Local blunders DSM editing; 
Filtering; 

Shadows Large viewing angle; 
Sun inclination; 
Surface morphology; 

Mismatches Radiometric 
preprocessing 

Low texture areas Land covers (parking lots, bare 
soil, etc.) 

Mismatches Radiometric 
preprocessing; 
Seed points; 

Spilling/saturation of  roof Radiometry; 
Sun and satellite elevation; 
Surface inclination;  
Surface material; 

Local blunders Masking;  

Occlusions in urban areas Convergence angle  Local blunders Seed points 
Height range Steep mountain; 

Vertical steps; 
Low details Seed points 

Cloud cover Whether conditions  Mismatches Masking 
Water (lakes, sea)  Bad quality DSM Masking 
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4. 3D Information extraction 

In the previous sections we demonstrated that it is possible to model large metropolitan area in detail using stereo images 

acquired by satellite VHR optical sensors. The DSMs allow for a series of automatic extraction of 3D information in order 

to prevent, monitor or simulate the major natural disasters in the world or assess any damages. Some common applications 

of DSMs include: 

- Analyses of terrain geomorphology  (aspect, roughness, slope, see an example in Figure 17) for geological studies 

(landslides or avalanche); 

- Modeling of water flow and mass movement (Figure 18); 

- Automatic buildings height extraction for volume and population estimation (Figure 19); 

- Baseline or relief map creation; 

- Logistics, reconstruction and recovery, pipeline route planning; 

- 3D visualization and realistic interactive fly-through navigation (Figure 20, Figure 21). 

 

     
Figure 17. Slope in degrees of GE1 DSM (center) and SRTM (right) over Guatemala City and original image (left). 

 

  
Figure 18. Flood simulation in North-East of Panama City 

using WV2 DSM. 

Figure 19: 3D visualization of digital terrain model and 

buildings over Panama City. The color of the buildings 

corresponds to their height. 

 

  
Figure 20: 3D visualization of digital surface model of 

Guatemala City from GE1 stereo pairs with texture from 

MS channels. 

Figure 21: 3D visualization of digital surface model of 

Teheran from WV2 stereo pairs with texture from MS 

channels. 
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 Buildings height extraction 4.1.

Among these applications, for automatic building height extraction the following methodology was adopted. The workflow 

is summarized in Figure 22. After a preliminary post-processing of the DSM (tiling and format conversion), the points on 

the ground are separated from those above ground in order to extract the digital model of the terrain (DTM). Since terrain 

slope is usually different from the slope seen between the ground and the tops of trees and buildings, this slope difference is 

used to separate ground and non-ground points. A point    (        ) is classified as ground measurement if the maximum 

value (       ) of slopes between point   (        ) within a given radius is less than predefined threshold s: 

 

     = 
       

√(      )
   (      )

 
                if   < s [1] 

 

where      is the slope between    and   . This filtering approach, based on Maximum Local Slope (MLS), is embedded in 

ALDPAT 1.0 (Airborne LIDAR Data Processing and Analysis Tools) software (Zhang, K., Cui, Z., 2007). In general the 

algorithm performs well not only of flat areas but even on hilly areas densely populated (Figure 23). The points are located 

on roads and open areas (green-land, parking lot etc.).  

 

 
Figure 22. Workflow of buildings height detection from DSM. 

 

 
Figure 23. Ground points (in red) automatically extracted from Panama City DSM. Example on flat area (right) and hilly 

area (left). 

 

The ground points are triangulated into a TIN (Triangulated Irregular Network) and then the TIN is interpolated and 

rasterized to get the DTM (Digital Terrain Model). By performing a pixel-by-pixel difference between the DSM and DTM, 

the so-called normalized DSM (nDSM) is obtained. The nDSM represents the height of all the objects present on the 

terrain. The objects include large buildings, dwellings, trees, stadium, streets, vehicles, goods container etc. As the purpose 

is to estimate the height of built-up structures, the next step is the masking of all objects that don’t belong to this category. 

In our study we experiment the use of NDVI and the road network available from OSM (Open Street Map, 2011) to remove 
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trees and vegetation and roads and vehicles respectively. The NDVI was calculated on the orthorectified multispectral data. 

For each stereopair the images with viewing angle closer to nadir was used. 

Today the OSM (a collaborative, open source project to develop free geographic data) is widely available basically all over 

the world and is very detailed in large cities. The lines of the road network were converted into merged polygons by 

assigning a size according the road type (highest values for motorway, lowest values for footway). Then the merged vector 

polygons were converted into raster format for the masking procedure. Figure 26 show an example of automatic building 

height extraction from the DSM on a subset in Panama City. The figure shows the original image, the DSM, DTM, nDSM, 

OSM and NDVI mask, final building heights. Other examples on Dakar (Figure 24) and Guatemala City (Figure 25) are 

shown.  

The results show that the proposed methodology for automatic building height extraction is quite successful in complex 

scenarios with inhomogeneous terrain geomorphology (flat, hilly, mountain areas) and building topology (dense city 

centers, residential areas, and separated buildings). Due to lack of ground reference information it was not possible to 

evaluate quantitatively the correctness of the extracted height values. Anyway a visual analysis was conducted in a 

selection of areas with different characteristics in terms of building structure and terrain shape. As the completeness is 

concerned, building blocks are correctly defined in the final product. By comparing the extracted heights and the number of 

floors visible in the images, it resulted that the height range is corresponding to the reality. Remaining non-building objects 

mainly include image matching errors in homogeneous areas producing small blobs in the DSM and objects in bare soil or 

parking areas, that were not masked neither by the NDVI nor by the OSM.  

 

  
Figure 24: Automatic building height extraction in Dakar from stereo images; results on a selected area. (left) pan-

sharpened orthophoto (right) building height with legend. 

  
Figure 25: Automatic building height extraction in Guatemala City from stereo images. (left) pan-sharpened orthophoto 

(right) building height with legend. 
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VHR                                                          DSM 

  
DTM                                                        nDSM 

 
OSM Road Network                                     NDVI 

 
Building heights 

Figure 26: Automatic building height extraction in Panama City from stereo images. 

 

5. Conclusions 

This report discusses the quality of 3D surface modeling from VHR stereo images acquired from space borne platform. 

Thanks to the ability of last generation satellites, stereo images with along-track stereo viewing and ground sample distance 

below 1m can be acquired along one orbit path with a small time delay. Then standard photogrammetric procedures are 

followed to orient the images, generate epipolar images and extract the DSM with image matching procedures. In this 

report the DSMs were extracted from GeoEye1 stereo images over Dakar and Guatemala City and from WorldView-2 
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stereo images over Panama City, Constitucion, Kabul, Teheran, Kathmandu and San Salvador using ERDAS LPS and 

eATE tools. Ground points were not available. The DSMs were not edited in post-processing, nor improved by measuring 

additional seed points to be used as mass points. 

The analysis of the DSMs show that the surface quality is related to the acquisition parameters (i.e. satellite and sun 

elevation), the geometric processing (quality of initial orientation and availability of GCPs), the matching strategy (in our 

case, eATE tool in ERDAS LPS) and the terrain characteristics (i.e. morphology, height range, land cover, water, and cloud 

cover). On the acquisition point of view, the base-on-height ratio of the stereo acquisition, and consequently the 

convergence angles, is crucial for automatic DSM generation. On a theoretical point of view, the larger is the B/H ratio, 

better is the stereoscopy and the height estimation; on the other hand images acquired from very different viewing angles 

contain certain disadvantages. First of all, they show occlusions in urban areas occlusions due to buildings, therefore 

corridors between buildings cannot be modeled properly. In addition large angles produce longer shadows, and therefore 

low-texture homogeneous areas where image matching does not perform well. As the image processing is concerned, the 

quality of sensor geometric orientation determines the correctness of the estimated surface height in object space. In general 

ground control points are recommended to improve the image geo-location accuracy, but in case of remote areas or in 

emergency situation, this information cannot be recovered. Anyway it is recommended to guarantee the relative orientation 

between images composing a pairs and between pairs by manually measuring a sufficient number of well distributed 

common (tie) points in the images. In fact the inaccurate relative orientation of overlapping strips might cause height steps 

in the final DSM.  

With regard to the sensor, the quality of GE1 and WV2 images is good and the very high spatial resolution allows detailed 

modeling of any terrain type. The availability of multispectral channels is favorable for future operation, like cloud and 

water masking, object identification. 

The report demonstrated the potential of DSM from VHR imagery for the extraction of value-added 3D information, like 

building height, relevant for post-disaster and post-crisis needs assessment (PDNA) activities, monitoring and simulation of 

natural hazards. 
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Annex A. Project overview in ERDAS LPS working environment 

 
Figure 27. Dakar project. Location of GeoEye stereo-pairs (in grey with white border) and manually measured tie 

points (red squares). 

 
 

 

 
Figure 28. Panama City project. Location of WorldView-

2 stereo-scenes and manually measured tie points (red 

squares).  

Figure 29. Constitucion project. Location of 

WorldView-2 stereo-scenes and manually measured tie 

points (red squares). 
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Figure 30. Guatemala City project. Location of GeoEye-1 stereo-scenes and manually measured tie points (red squares).  

 

 
Figure 31. Teheran project. Location of WorldView-2 stereo-scenes and manually measured tie points (red squares). 
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Figure 32. Kathmandu project. Location of WorldView-2 stereo-scenes and manually measured tie points (red 

squares).  

 

 

 
Figure 33. San Salvador project. Location of WorldView-2 

stereo-scenes and manually measured tie points (red squares). 

Figure 34. Kabul project. Location of WorldView-2 

stereo-scenes and manually measured tie points (red 

squares).  
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Annex B. Overview of DSM 

 
Figure 35. Overview of DSM from GE1 stereo pairs over Dakar. 
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Figure 36. Overview of DSM from WV2 stereo pairs over Panama City. 

 

 
Figure 37. Overview of DSM from GE1 stereo pairs over Guatemala City. 
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Figure 38. Overview of DSM from WV2 stereo pairs over Constitucion. 

 

 
Figure 39. Overview of DSM from WV2 stereo pairs over Teheran. 
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Figure 40. Overview of DSM from WV2 stereo pairs over Kabul. 

 

 
Figure 41. Overview of DSM from WV2 stereopairs over Kathmandu. 
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Figure 42. Overview of DSM from WV2 stereo pairs over San Salvador. 
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